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ARTICLEINFO ABSTRACT

Available online 8 August 2013 The Human Proteome Project (HPP) is designed to generate a comprehensive map of the
protein-based molecular architecture of the human body, to provide a resource to help

Keywords: elucidate biological and molecular function, and to advance diagnosis and treatment of

Human Proteome Project diseases. Within this framework, the chromosome-based HPP (C-HPP) has allocated

Proteomics responsibility for mapping individual chromosomes by country or region, while the

Chromosome 6 biology/disease HPP (B/D-HPP) coordinates these teams in cross-functional disease-based

groups. Chromosome 6 (Ché) provides an excellent model for integration of these two tasks.
This metacentric chromosome has a complement of 1002-1034 genes that code for known,
novel or putative proteins. Ché is functionally associated with more than 120 major human
diseases, many with high population prevalence, devastating clinical impact and profound
societal consequences. The unique combination of genomic, proteomic, metabolomic,
phenomic and health services data being drawn together within the Ché program has
enormous potential to advance personalized medicine by promoting robust biomarkers,
subunit vaccines and new drug targets. The strong liaison between the clinical and
laboratory teams, and the structured framework for technology transfer and health policy
decisions within Canada will increase the speed and efficacy of this transition, and the
value of this translational research.
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Biological significance

Canada has been selected to play a leading role in the international Human Proteome Project,
the global counterpart of the Human Genome Project designed to understand the structure
and function of the human proteome in health and disease. Canada will lead an international
team focusing on chromosome 6, which is functionally associated with more than 120 major
human diseases, including immune and inflammatory disorders affecting the brain, skeletal
system, heart and blood vessels, lungs, kidney, liver, gastrointestinal tract and endocrine
system. Many of these chronic and persistent diseases have a high population prevalence,
devastating clinical impact and profound societal consequences. As a result, they impose a
multi-billion dollar economic burden on Canada and on all advanced societies through direct
costs of patient care, the loss of health and productivity, and extensive caregiver burden.
There is no definitive treatment at the present time for any of these disorders.

The manuscript outlines the research which will involve a systematic assessment of all
chromosome 6 genes, development of a knowledge base, and development of assays and
reagents for all chromosome 6 proteins. We feel that the informatic infrastructure and MRM
assays developed will place the chromosome 6 consortium in an excellent position to be a
leading player in this major international research initiative.

This article is part of a Special Issue: Can Proteomics Fill the Gap Between Genomics and

Phenotypes?

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction HIST1H2AA [2]. The five sub-regions of the eMHC contain 523

Chromosome 6 (Ch6), a metacentric chromosome 171.11 Mbs in
length, contains approximately 6% of the human genome [1]. The
first gene map was completed in 2003, and current sequence data
identify a total complement of between 2344 and 2780 genes,
with an average density of 16.2 genes per Mb [2]. Between 1002
and1034 of these genes code for known, novel or putative
proteins, and about 2.2% of the chromosome is occupied by
exons with a mean length of 281 Bps. More than 350 other genes
code for miRNA, snRNA, snoRNA and miscellaneous transcripts,
while a further 700 are processed or unprocessed pseudogenes
[2]. Recent studies have identified genes related to critical
biological functions throughout the length of Ch6, of which the
largest is the PARK?2 gene on the q arm (1.4 Mb, 12 exons) [3-5].
These genes code for approximately 3000 known protein
transcripts expressed in extracellular, intracellular or membrane
compartments, many are involved in immunity, inflammation,
neuronal activities and other critical cellular activities, of which
key examples are presented in Table 1.

Of the several discrete regions within the chromosome, one of
the most prominent is the extended major histocompatibility
complex (eMHC). This 7.6 Mb super-region is located on the
short arm of Ché6 and extends telomerically from RPL12P1 to

genes, of which approximately 260 (50%) are expressed [2,6]. The
eMHC is the most gene-rich region of the human genome, with a
density of over 68 total genes and 35 protein coding genes per Mb.
Several functional gene clusters have been defined within this
extended region (six clusters and six superclusters) of which the
two largest and potentially overlapping are the histone and tRNA
genes. Transcripts of both are highly required in biological
regulation and may be under selection pressure to cluster in
association with the MHC [6]. The Human Leukocyte Antigen
(HLA) genes located within the eMHC at 6p21.3 are critically
related to infection, immunity and inflammation. The more
than 200 genes within this hypervariable cluster are divided into
3 regions designated as class I, II and III. The HLA genes are
typically highly polymorphic and exhibit tight linkage disequilib-
rium. More than 8000 alleles have now been identified within the
HLA genes, coding for an estimated 6800 proteins of which only
2% can be serologically distinguished by current antibody
methods.

1.1. Role in human diseases

Chromosome 6 is functionally associated with more than
120 major human diseases, including cancer, heart disease,
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infectious, immune and inflammatory disorders and mental
illnesses [7]. Many of these chronic diseases, examples of which
are shown in Table 2, have a high population prevalence,
devastating clinical impact and profound societal consequences,
and as a result impose multi-billion dollar economic burdens on
all advanced societies [8,9]. There is no definitive treatment at
the present time for virtually any of these disorders.

Common structural defects in Ché result in defined clinical
syndromes. Interstitial deletions within the 6p22-24 segment
are associated with orofacial clefting, short neck, clinodactyly
and heart and brain defects [10], while terminal deletions
result in corneal opacity, facial dysgenesis and deafness [11].
Deletions within 6q are associated with cardiac anomalies,
facial dysmorphisms and mental retardation. Duplications in
6p may also be associated with growth retardation, facial
anomalies and mental retardation, while 6q duplications are
associated with microcephaly, mental retardation, facial anom-
alies, and palatal, eye and genital anomalies. Such associations
emphasize the disease relevance of genes encoded on Ché6 and

Table 1 - Selected proteins encoded on Ché6 with clinical
or biological importance.

A. Extracellular proteins and subgroups in immunity and inflammation
Tumor necrosis factor a

Lymphotoxins A&B

Lymphocyte antigens 6 complexes, loci G5C, G6C, G5B, G6D
Complement factors C2, C4a, C4b, complement factor B (member of
alternative pathway)

Vanins 1,2,3

Interleukin 1,2,3

Serum response factor

Apolipoproteins A and M

Vascular endothelial growth factor o

Connective tissue growth factor

Serpin protein 6B

Endothelin 1

Collagens IX-alphal, X-alphal, XI-alpha2, XlI-alphal, XIX-alphal,
XXI-alpha

Laminins lam-alpha2 & lam-alpha4

B. Membrane proteins

Opioid receptor,mu 1

GABA receptors 1, GABA receptor rhol, GABA receptor rho2
Serotonin receptors 1B & 1E

Glutamate receptors ionotropic kainate2, metabotropicl, metabotropic4
Interleukin receptors IL-20receptoralpha, IL-22 receptor,alpha2
Interferon gamma receptor

G-protein coupled receptors GPCR, GPCR family C, group 6,membrane A

C. Transcription factors and other proteins

3 PHD finger proteins members 1,3,10

Fyn and Fyn-related kinase

Ezrin

Flotillin 1

Gap junction proteins alpha 1, alpha 10, beta 7 and epsilon one
Natural cytotoxicity triggering receptors members 2&3
BCL-associated protein

Parkin 2

Prolactin

Vasoactive intestinal peptide(VIP)

Glycoprotein hormones, alpha polypeptide

Insulin-like growth factor 2 (somatomedine A) receptor
Hypocretin (orexin) receptor 2

Pepsinogen

the need to fully understand their biological roles and tissue
expression patterns.

Immune, inflammatory and degenerative diseases associated
with specific sequence variations or multiple allelic heterogeneity
include type I diabetes mellitus, multiple sclerosis, Alzheimer’s
disease, Parkinson disease, schizophrenia, rheumatoid arthritis
and many other inflammatory or non-inflammatory disorders.
The societal impact of these disorders is enormous (Table 3). The
population prevalence of juvenile diabetes is estimated to be 1%;
life expectance is reduced by 15 years in this disease; chronic
ocular, renal and neural complications are typical, and the
economic burden is around $2 billion annually in Canada [12].
The prevalence of multiple sclerosis in Canada is among the
highest in the world, with societal economic costs of $1 billion per
year [13]. Alzheimer’s disease, schizophrenia, rheumatoid arthritis,
celiac disease and others add to this burden of disorders associated
with Ch6, with annual costs in the billions of dollars [14,15].

Other disorders may reflect altered expression of protein
coding genes of Ch6. Increased expression of vascular
endothelial growth factor (VEGF) occurs in POEMS syndrome
(Crow-Fukase syndrome) [15,16] and VEGF is highly associat-
ed with metastatic cancers. PPIL1 gene expression is increased
in colon cancer cells and reduction in its expression may help
to suppress the growth of these malignant cells. BMP6 gene
over expression is associated with aggressiveness prostatic
cancer and its potential role as a prognostic predictor, while
expression of the K1FC1 gene in the extended class II sub
region of MHC is reported to be related to brain metastasis
from non-small cell lung cancer.

Malignancy may be associated with structural deletions
(e.g. lymphoblastic leukemia) [17,18], loss of heterozygosity or
copy number variation [19,20], or defined risk loci which may
function as tumor-suppressor genes [21-23]. Loss of heterozygos-
ity in MHC genes has been closely related to acute lymphoblastic
leukemia (ALL) [18], while a tumor suppressor gene at 6q15-21 has
an important role in acute lymphoma type adult T-cell leukemia
(ATL) and in childhood ALL [24]. Deletions in 6q21 occur in 7% of
B-cell chronic lymphocytic leukemias (B-CLL) [25] and of 6q27 in
21% of patients with CLL, while deletions in the long arm of
chromosome 6 are related to diffuse B-cell lymphoma in testis
[26]. Ch6 transcription factor genes have been implicated solid
organ tumors. The mesodermal specific tumor suppressor gene
TCF2 is silent in malignancies of the head and neck or lung
cancers, while the DNA-binding transcriptional repressor PHD
Finger Protein 1 (PHF1) is associated with endometrial stromal
cancer in recombination with other genes from chromosomes 7
and 10. Enzyme coding genes may enhance malignant risk
through their detoxification activity or their direct cell cycle
regulation and tumor suppressing effects.

Ch6 genes such as C6orf173 (CENPW) may influence somatic
growth, the response to different pathogens or drugs, or may be
protective against other diseases such as the non-HLA gene
NFKBIL1 in the MHC region and HLA-DRB1 which is strongly
protective against type 1 diabetes mellitus regardless of its
linkage disequilibrium with HLA-DRB1.

1.2.  Team and technologies

The Ch6 Consortium has integrated the initiatives of both the
C-HPP and B/D-HPP to complete the proteomic mapping and
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Table 2-Principal chronic diseases associated with

Chromosome 6. Disorders indicated by * are associated
with exceptional clinical and societal burden.

¢ Alzheimer’s disease * ¢ Narcolepsy *

¢ Ankylosing spondylitis * ¢ Nephritis *

e Autism * ¢ Neuroblastoma *

¢ Behcet’s disease * ¢ Parkinson disease *

¢ Bipolar disorder * e Pemphigus vulgaris *

¢ Celiac disease * ¢ Polycystic kidney disease *

¢ CHAR syndrome e Porphyria

¢ Complement deficiency * Primary ciliary dyskinesia

e Crohn’s disease * e Psoriasis *

o Diabetes mellitus type 1* * Retinitis pigmentosa

¢ Ehlers-Danlos syndrome e Rheumatoid arthritis *

e Epilepsy * ¢ Schizophrenia *

e Fanconi anemia e Spinocerebellar ataxia

¢ Hashimoto’s thyroiditis * ¢ Sudden infant death syndrome
¢ Macular degeneration * e Systemic lupus erythematosus *
e Maple syrup urine disease e Tourette syndrome

e Multiple sclerosis * ¢ Viral resistance and response *

to discern the biological role of the relevant proteins in
human disease. The consortium has developed an interna-
tional collaboration combining clinomics, genomics, proteo-
mics, terminomics and metabolomics platforms, and has
selected a sequence of discrete targets of critical importance
in relation to diseases closely linked to this chromosome.
Coordinated projects within the overall program include the
immunopeptidome, histone-binding proteins, the N and
C-terminomes of the Ch6 proteins and other relevant targets
of primary clinical and biological importance. Strategic
approaches combine 3D-computerized modeling of proteins
and bound peptides, large-scale in-vitro expression using
bioreactor technology, and localization and quantitative
monitoring of target tissues in normal healthy subjects and
precisely phenotyped primary disease populations using
nanobore liquid chromatology, MRM/MS and other advanced
proteomic methods.

The structure and organization is shown in Fig. 1. The
steering committee draws together expertise in the fields of
genomics, proteomics, molecular sciences, statistics and
bioinformatics, and clinical medicine, to contribute comple-
mentary and synergistic expertise. The Consortium includes
clinical scientists from infectious disease, multiple sclerosis,
rheumatology, diabetes, and stem cell and organ transplan-
tation who provide precisely phenotyped subjects with
relevant diseases and supervise their biological study. Exten-
sive collaboration with international teams and close integra-
tion with partner academic institutions and industry are
designed to enable efficient distribution of responsibilities,
effective use of cutting edge resources, and rapid scaling of
basic and applied research.

1.3. Strategic approach

The Ché HPP program will proceed in discrete stages, with
clinical samples drawn from extensive partner biolibraries in
principal areas of infection, autoimmunity, and alloimmunity
used to compare normal and affected tissues in precisely
phenotyped subjects for each of the targeted disease states.

The four stages of the Ch6 HPP program will involve the
development of MRM assays for all Ch6 proteins, the develop-
ment of a Ch6 knowledge base, the generation of Ch6 reagents
and primary data collection from a range of tissues known to
express different Ch6 proteins to determine their N and C
termini. The four stages will be integrated throughout the
program to maintain a focus on unknown proteins and protein
isoforms.

MRM assays will be generated for each protein encoded on
Ché6 starting with extant data in public mass spectrometry
databases. In order to ensure confident detection and quanti-
tation, a minimum of 3 peptides will be targeted for each
protein [27,28]. This strategy, which constitutes the most
sensitive protein detection technique currently in use, has
been successfully implemented in several member labs with
limits of detection routinely reported with attomole sensitivity
[29,30]. Peptides that would allow detection of specific splice
variants will be targeted, while avoiding those covering regions
of known polymorphism. As N and C termini data are collected
by terminal amino isotope labeling of substrates (TAILS)
[48,49,51] analyses SRMs for termini reflecting altered biological
function will be generated in order to quantify the activity of
different proteins where this is altered by proteolytic processing
[52,53]. Previously unknown or uncharacterized proteins whose
expression can be confirmed in this way will then be targeted in
a second phase using peptide antibodies. Such antibodies will

Table 3 -Presentation, prevalence, and socioeconomic
impact of selected major diseases associated with Ché6.

Rheumatoid disease

Autoimmune disorder causing relapsing, progressing inflammatory
joint disease with deformity and incapacitation. Population prevalence
estimated at almost one quarter million. Management is improving
with biological therapeutics, but restoration of specific self tolerance is
the ultimate goal. Economic burden is extreme, exceeding $5 billion per
year.

Juvenile diabetes

Autoimmune disorder causing impaired glucose metabolism,
leading to progressive blindness, renal failure, vascular damage and
amputations. Prevalence estimated at 1% of population. Life
expectancy reduced by at least 15 years. Management is improving
but remains inadequate, with no cure. Economic burden estimated at
$2 billion per year

Schizophrenia

Progressive, relapsing and destructive mental disease with compelling
immunogenetic predilection causing psychological and psychiatric
deterioration, institutionalization, and incarceration. Management is
inadequate, and there is no current cure. Economic burden estimated
at over $2 billion per year.

Alzheimer’s disease

Most important form of degenerative neurological disease responsible
for two thirds of cases dementia. Population prevalence estimated at
over half a million and increasing rapidly with an aging society. There
is currently no effective management, and no cure. Societal and
economic burden is profound, estimated at $15 billion per year.

Multiple sclerosis

Progressive demyelinating neuroimmune disease leading to paralysis
and immobility. Population prevalence in Canada is among the highest
in the world with 75,000 sufferers. Current management strategies are
oriented to delay disease progression, but no cure is available. Societal
and economic burden is profound, estimated at $1 billion per annum.
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be used to rapidly characterize the expression of these
proteins in various cell and tissue types using a combination
of immunoenrichment followed by liquid chromatography-
multiple reaction monitoring (LC-MRM) analysis [29,31]
or MALDI-MS [32], as well as more conventional but high
throughput approaches such as tissue microarray analysis.

The immunopeptidome will form a specific research target
within this framework, reflecting the enormous allelic poly-
morphism in the MHC class I and II regions and the diversity
of immune responses across the human population. The Ché
HPP Consortium will take advantage of its unique teams and
expertise to measure self and foreign peptides presented by
MHC molecules in a set of key immune and inflammatory
disorders using a structured approach (Fig. 2).

A highly-scalable methodology, implemented in a leadership-
scale supercomputing environment at the Argonne Leadership
Computing Facility, will be used to accurately model bound
peptides in HLA molecules. The iterative algorithm invokes an
initial homology template-based methodology [33] and escalates
into more advanced, physics-based approximations of protein—
protein interactions [34] and estimations of binding free energy
[35]. This method has been rigorously benchmarked against
experimentally determined binding data from the Immune
Epitope Database (IEDB) repository [36] and outperforms reported
structural based prediction methods.

HLA immunopeptides will then be identified by nanobore
liquid chromatography (nanoLC) coupled to tandem mass
spectrometry [37-40]. Thousands of immunopeptides that
originated from membranal HLA (mHLA) and sHLA molecules
have been identified from cells and blood [40]. mHLA from
tissue/cell lysates and sHLA from blood will be isolated using
commercially-available antibodies and peptides released by
stripping with acetic acid [41], concentrated and prepared for
nanoLC-tandem mass spectrometry using state-of-the-art in-
strumentation. As HLA peptides are non-tryptic their dissocia-
tion under MS/MS will be less predictable than that of tryptic
peptide [39,40,42]. Peptides will be identified using a two-step
operation using shotgun proteomics with instrument-specific
algorithms and de novo sequencing. The identification of
HLA-bound peptides will be facilitated by the high resolution
and high mass-accuracy measurements and knowledge of HLA
binding motifs [43,44].

Multiple reaction monitoring (MRM) assays will be devel-
oped for all candidate MS antigens, commencing with known
methods as a starting point with data drawn from on-line data
repositories such as the Global Proteome Machine, PRIDE and
PeptideAtlas. Bioinformatics tools will be used to predict the
tryptic peptides most likely to make good MRM candidates,
which will then be synthesized these in stable-isotope-labeled
form and their detection empirically optimized via infusion
electrospray [45-47].

In addition to examining proteins encoded by Ch6, studies
will map the position and nature of histone proteins that
scaffold them. Using a modified ChIP-Seq (chromatin immuno-
precipitation with massively DNA sequencing) approach, the
research will cartograph at the mononucleosome level, the
relative position of H2A, H2B, H3, and H4 and will examine
histone variant abundance and distribution. Given that the
presence of specific histone variants have been correlated with
the level of expression of genes related to various diseases, this

initial map will provide a starting point to establish linkages
between histone protein contents and protein expression. In
parallel, studies will map the different post-translational
modifications, including lysine methylation and acetylation,
serine phosphorylation and arginine methylation, along this
chromosome. Finally, mass spectrometry approaches will be
employed to map protein complexes co-localizing with specific
marks. This project will provide the first protein-protein
network specific to Ché, and the first systematic atlas of histone
post-translational modifications on one chromosome. Mapping
of these marks will be instrumental for establishing linkages
between a given mark and a specific disease, and given that
these marks frequently work in combinatorial fashion, the
development of new antibodies that recognize combinatorial
marks will provide important working tools for the community
of chromatin biologists and epigeneticists.

In addition, studies will define the N and C-termini of all Ch6
proteins and their post-translational modifications using TAILS
in both the N and C-TAILS variants: N-TAILS for original mature
protein N termini [48,49] and C-TAILS for the protein-C-termini
[50]. A TAILS-based workflow for the sensitive and reliable
detection of N termini in complex human tissues has recently
been established using erythrocytes as technically challenging
source material [54]. In these procedures we deploy novel
polymers for proteomics that we developed. Thus, to analyze
the N-terminome, dendritic aldehyde polymers remove tryptic
and C-terminal semi-tryptic peptides leaving the unbound
naturally occurring acetylated or cyclized protein termini and
the labeled mature protein N-termini by MS/MS. These dendritic
polymers are a novel class of exceedingly efficient, highly
functional (~3200 functionalities/molecule), high molecular
weight (MW) (565 kDa) water-soluble polymers. Transcript anal-
yses will be used to select tissues richly expressing Ch6 proteins
and TAILS performed. For the Ché6 project new catch and release
polymers will be developed for the selective enrichment of N and
C termini and other PTM modified peptides in Ché6 proteins.

Results from the MRM analyses coupled with antibody-based
screens will be used in developing the knowledge base, the third
pillar of the HPP. While this base will be Ch6 specific, it will be
aligned with the global effort. An informatics and bioinformatics
platform for planning and coordination, assessment and man-
agement of resources, communications, information gathering,
distribution of work, quality assurance and control, annotation
and curation, sorting and prioritizing, statistical analysis, data
representation, interpretation, deployment and distribution,
usage and usability, and training is now in preparation. This
will ensure collaboration with neXtProt, the HuPO database for
the Human Proteome Project (HPP), and will help to define the
key features of this data repository. Integration of existing data
repositories to generate complete mRNA and protein lists of all
genes encoded by Ch6 is now underway, and results will be made
available via the Chromosome6.ca data portal for this program.
The research community will be encouraged to share informa-
tion on Ch6 genes and proteins for insertion into the data portal.

The last goal of the Ch6 HPP program will be to generate
reagents for Ché gene products where there are none available.
The knowledge base will help the consortium reach out to the
research community and encourage sharing of currently
available Ché6 reagents such as anti-peptide antibodies. The
team will then concentrate on the development of reagents for
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Fig. 1 - Structure and organization of the Chromosome 6 Consortium.

those Ché proteins which lack any means of protein detection.
The aim is to have commercializable reagents for all Ché
proteins which can then be used to define protein function and
disease relevance.
1.4. Expected impacts
The benefits of the HPP will be far-reaching, providing the basis
for personalized care, strategies for comprehensive disease
management, and the opportunity to reduce the societal
burden of human disease. Capitalizing on these opportunities,
however, requires a carefully structured and rigorously coordi-
nated approach to discovery and development.

Disorders associated with Ch 6 are among the most
devastating, chronic and costly illnesses that affect society.
Costs of care for these disorders are in the tens of billions of

dollars annually in Canada alone, and the global impact is
inestimable. These health costs are paralleled by catastrophic
personal and productivity losses imposing an immense
economic and physical burden on patients, families and
society through destruction of personal health, disruption of
family integrity, diversion of caregiver time and consumption
of public health resources.

The unique combination of genomic, proteomic, metabo-
lomic, phenomic and health services data now being drawn
together within this program has enormous potential as we
move towards personalized and evidence-based medicine
and as the need for robust biomarkers, subunit vaccines and
new drug targets grows increasingly acute. The combination
of resources over the past two decades provides an excep-
tional opportunity to enable the development of precise and
reliable biomarkers of inflammatory injury and novel targets
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Fig. 2 - Modeling and characterization of the bound peptides in the human immunopeptidome.

for therapeutic development that will improve treatment and
reduce tissue injury in the cardinal diseases, offering patients
the potential to retain health and employment, contributing
to human health and societal welfare. These innovations will
be welcomed by clinicians world-wide, as demonstrated with
our previous discoveries in different fields. The strong liaison
between the clinical and laboratory teams, and the structured
framework for technology transfer and health policy deci-
sions within Canada, will increase the speed and efficacy of
this transition, and the value of this translational research.
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